
 

 

Abstract- Phase resetting of cells in response to a brief 
current pulse has been observed in a variety of nervous 
tissues including cardiac cells.  External stimulation of the 
sinoatrial node is due to largely positive currents, 
depolarising the cells, except for some ACh interactions. 
Factors influencing this include the timing of the current 
injection, its polarity, magnitude and duration.  Both 
prolongation and shortening of the interbeat interval can 
occur. 
The effect of current injection on cells of the sinoatrial 
node have been analysed using a model cell developed by 
[1].  This model defines the ionic currents that cause the 
spontaneous electrical activity of the cells. 
Keywords -  Phase response, sinoatrial node, memory effect 

I. PHASE RESETTING 

The application of brief pulses of current to sinoatrial 
pacemaker cells may result in phase-dependent changes in the 
cell’s cycle length.  In general, these applied pulses do not 
affect the amplitude or the shape of the pacemaker cell action 
potential.  The magnitude and direction of the phase shift 
depend on the timing as well as on the intensity and duration 
of the stimulus. 

The effects of the external stimuli over the cell’s cycle of 
activity can be summarised as a Phase Response Curve 
(PRC).  This curve defines the phase shift of the discharge of 
the pacemaker cell with constant intrinsic cycle length as a 
function of phase at which an external stimulus is applied to 
the pacemaker action potential.  In this study, the maximum 
downstroke gradient of the pacemaker action potential is 
taken to be the reference point, i.e. the point of zero phase.  
The phase φ is then defined as φ = t/τ, when t is the time of 
stimulus onset and τ is the period of the unperturbed cell 
cycle.  The phase shift, ∆φ, is either an advance or a delay of 
the phase, lengthening or contracting the cell’s cycle after the 
stimulus.  In general, a pulse applied early in the cycle 
prolongs that cycle, as opposed to later in the cycle, 
whereupon it shortens it (for example [2], [3]).  An 
approximation of the cardiac PRC is a linear function of ∆φ 
with φ.  The slope can be related to fundamental parameters 
of the oscillator. 

Physiological data shows phase resetting in aggregates of 
ventricular cells [2], both embryonic and adult [4], as well as 
single sinus cells [5].  Simple Hodgkin-Huxley type [6] ionic 
models model this effect quite well.  More complex models, 
however, also fit the PRC as well as matching other 
physiological measurements. 

Physiological recordings of cells and their response to 
external stimuli usually take the form of responses to pulse 
trains.  It has also been observed experimentally, that the 
period of the cell’s cycle does not significantly change in 

those cycles post the stimulation period [5].  This leads to the 
hypothesis that there is no “memory” effect in the cell; that is, 
the spontaneous cycle length is unchanged after applying a 
single pulse to the system.  If the cells do indeed have no 
“memory” of the perturbation in cycles post the stimulation 
cycle then it is possible to derive from these experiments the 
effect of only one such pulse. 

When a stimulus is singly applied to the cell, only the 
cycle in which it is applied is affected.  The cell’s cycle 
appears to revert to its intrinsic length, frequency and shape 
in subsequent cycles after a single pulse. 

This assumption may be used to derive a PRC for a single 
sinus cell [5].  Pulse trains were applied in different 
entrainment ratios to build up a picture of the phase response 
of the cell to a particular current stimulus.  For 1:1 
entrainment, the new cycle length is directly related to the 
phase of the applied stimulus: 

τ = (1 + ∆φ) Tfr 

where  τ  is the new cycle length, 
 Tfr  is the intrinsic cycle length, and  

∆φ  is the phase movement due to the stimulus (a 
fraction of the intrinsic cycle length). 

If the stimulus period is too brief to fall within the 
maximum limit specified by the PRC, 1:1 entrainment is lost, 
and 2 or more current stimuli may fall within a single 
pacemaker period.  Each can be assumed to act independently 
and sequentially.  Thus in the case of 2 pulses in a single 
pacemaker cycle, the new cycle length becomes: 

τ = (1 + ∆φ1 + ∆φ2) Tfr 
Fig. 1 shows the derived PRC. 
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. 1:  A steady-state phase response curve (“derived PRC”) for an 

isolated sinus nodal cell. 
wn from [5].  Pacemaker cycle length was 280ms.  The curve was 
ucted using a subset of data obtained during repetitive stimulation 
 cell.  Pulses of 0.17nA in strength and 20ms in duration were used. 
 (φ) and phase shift (∆φ) are expressed as fractions of the pacemaker 
sic cycle.  (Original figure expressed these as percentages).  This 
 has re-expressed the data [5], taking the maximum downstroke 
nt of the beat to be zero phase.  Symbols represent the different 
nment patterns obtained during repetitive stimulation. 
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The biphasic nature of the PRC can be readily seen.  
Applying a depolarising stimulus to the cell up to 
approximately 0.2 of the way through the cell’s cycle causes 
a small increase in the cycle length.  After this however, the 
application of the pulse decreases the cell’s cycle quite 
dramatically. 

This also can be seen from PRCs of aggregates of cells 
(see for example [2], [4]). 

II. IONIC CURRENTS CONTRIBUTING TO MEMBRANE 
POTENTIAL 

The single cell SA node model used in this study utilises 
Hodgkin and Huxley formalisms [6] in modelling the cell 
membrane as a capacitance connected to a number of parallel 
pathways representing individual ionic current flows.  The 
formulation used is that developed by Dokos [1].  The 
complete cell model consists of nine membrane currents that 
interact to generate spontaneous pacemaker activity.  These 
currents are the L-type calcium current iCa,L, the T-type 
calcium current iCa,T, the fast Na+ current iNa, the delayed 
rectifying K+ current iK,  the hyperpolarisation-activated 
current if, the Na-Ca exchanger iNaCa, the Na-K pump ip, the 
background Na+ current ib,Na and the ACh-activated K+ 
current ib,K.  The model also incorporates variations in 
extracellular and cytosolic ion concentrations, including Ca2+ 
sequestration by the sarcoplasmic reticulum.  We refer the 
reader to [1] for a complete description of the model. 

III. SIMULATIONS 

Computer simulations of the electrical characteristics of 
the cell were performed using GENESIS, the Generic Neural 
Simulation System [7]; implementing each of the currents of 
the model [1] as well as the relevant concentrations. 

The cell was modelled as a cylinder, 100µm in length, 
8µm in diameter, yielding a surface area of 2613(µm)2.  The 
capacitance of the cell was taken to be 32pF.  Reference [1] 
outlined a set of stable initial parameters, and these were used 
to create an initialisation set whereby the cell could be 
initialised at any point along this stable cycle. 

The timestep used for the simulation was between 
0.025ms and 0.001ms.  Current pulses were applied at 
different points along the cycle for a series of durations and 
magnitudes, and the simulation then continued for another 
0.6s (thus ensuring a minimum of one further beat was 
recorded, bearing in mind that the period of the cell cycle is 
approximately 0.384s for this model). 

IV. SIMULATION RESULTS 

A. Simulated and Experimentally Derived PRCs 
 
Simulations were performed using the Dokos model, 

perturbing the cell using varying pulse amplitudes and 
durations, and applying the stimulus during different phases 
of the cell cycle.   The stimulation pulses had magnitudes 
ranging from 0.01nA to 5nA and durations of 0.1ms to 20ms. 

Does the derived PRC [5] above, match that of the 
simulated cell, exposed to only single pulses?  

It is actually possible to obtain a fit of the general 
characteristics of the PRC with a simpler ionic model.  
Previously, simulations were made of the Yanagihara model 
([8], [5]).   

Although the specific cell geometry used in the 
experiments and simulations of [5] is unknown, on 
comparing the PRC with those derived from our simulations, 
the overall shape of the PRC was matched.  This can be seen 
in Fig. 2, which shows an overlay of the experimentally 
derived PRC with the two simulations. 

The fact that the much simpler Yanagihara model 
produces a PRC that closely resembles the PRC of the model 
points to the fact that the four, time and voltage independent 
currents in the Yanagihara model play a major role in shaping 
the PRC.  They are a slow inward current, a fast sodium 
current, a hyperpolarisation activated current and a potassium 
current.  There is also a time independent leakage current.  
These as well as other ionic currents are present in the Dokos 
model.  Whilst the simpler model seems to characterise the 
PRC quite well, the Dokos model also fits data from voltage 
and patch clamp experiments and is capable of accurately 
reproducing membrane current kinetics yielding an accurate 
reconstruction of the basic sinoatrial node action potential 
waveshape.  For a comparison of the Dokos and Yanagihara 
models (as well as other ionic models) we refer the reader to 
[9].  In extending the study of the effect of brief depolarising 
pulses on the pacemaker cell’s cycle, we chose to implement 
the more complex model. 

 
B. No Memory Effect 

 
It has been observed experimentally, that the period of the 

cell’s cycle does not significantly change in those cycles post 
the stimulation period [5].  This leads to the hypothesis that 
there is no “memory” effect in the cell; that is, the 
spontaneous cycle length is unchanged after applying a single 
pulse to the system. 

Indeed, the theory [5] used to “derive” the experimental 
PRC of Fig. 1 and 2 depend upon this.  To investigate, we 
performed simulations recording the membrane voltages of a 
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Fig. 2. Comparison of derived PRC [5] and two simulation experiments. 

The simulated stimulus in the Dokos model was a current pulse of 0.4nA
magnitude depolarising the cell for 1.25ms, and 1.1µA/cm2 for 20ms for the
Yanagihara model [5].  The experiment applied 0.17nA for 20ms.  Note that
the experimental data [5] and Yanagihara simulation data [5] has been
adjusted for phase, as their zero phase was at the peak of the action potential,
whereas we take the maximum downstroke gradient to be zero phase here. 

 



 

 

cell exposed to a depolarising pulse and also a control, which 
was unperturbed.  We then plotted the tracings of the 
membrane potential of these two cells, as well as a third 
trace, shifting the phase of the control trace to match the 
phase shift of the perturbed cell. 

It was found that over the entire range the simulation 
experiments performed in this study that subsequent cycles of 
the perturbed cell matched the period and shape of the control 
in cycles post the stimulation cycle.  Examples of this are 
shown in Fig. 3 and 4.  In this case, the applied pulse was 
1nA for 1ms.  The stimulus was applied in a series of 
simulations over a range of onset phases.  Fig. 3 shows the 
membrane voltage as a function of time for the cell showing a 
control trace, the perturbed cell’s trace and a “shifted” trace, 
where the control trace has been offset by the amount of 
phase resetting of the perturbed cell.  The shifted and 
perturbed traces overlap completely in cycles subsequent to 
that in which the pulse was applied.  Fig. 4 shows the I-V 
limit cycle for the cell, the total membrane current versus the 
membrane voltage.  Again both the control and perturbed 
traces are shown for comparison.  The systems move 
clockwise in time.  Upon application of the pulse, the 
perturbed trace deviates from the control limit cycle, but 
returns to it in subsequent cycles.  

This phenomenon was investigated for a range of 
stimulation pulses, magnitudes ranging from 0.01nA to 5nA 
and durations of 0.1ms to 20ms.  These were applied at points 
distributed along the whole cycle.   

IV. DISCUSSION 

The comparison of the model with the experimentally 
derived PRC [5] shows that the overall shape and attributes of 
the PRC are similar.  This gives credence to both the Dokos 
model, as well as the assumptions made in [5] that the cell 
cycle is unaltered by small depolarising pulses after the initial 
cycle in which the perturbation is applied. 

Indeed, when stimulations were performed with the 
model, the cell cycle returned to its original characteristics of 
cycle length and shape for cycles past that in which it was 
perturbed.  The only effect was to possibly alter its phase.  
This was true for the entire range of perturbation 
characteristics investigated.  This is indeed the hypothesis 
used in [5] to derive a PRC from results of pulse trains of 
differing entrainment ratios. 

As can be seen from the examples presented, (see Fig. 3), 
the greatest deviation from the limit cycle occurs when the 
pulse is applied near the maximum upstroke of the beat.  This 
does not, however, mean that the largest phase resetting 
ensues at this onset phase.  Rather, this is nearer mid-phase, 
(~0.2-0.3 depending on the particular stimulus), see for 
instance Fig. 2, when the cell membrane voltage is only 
gently rising. 

The existence of a single, stable limit cycle for this 
system also indicates that other, more abstract models for the 
sinoatrial node can also represent some important features.  
See for instance models based on Bonhoeffer-van der Pols 
formalisms (for example [10]). 
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(c) (d) 

Fig. 3 The Membrane Voltage trace for the cell showing a control trace, the perturbed trace.   
The applied pulse was 1nA for 1ms at the phases indicated.  A “Shifted Control” trace is also shown for comparison, where the control trace has been shifted 
by the amount of phase resetting of the perturbed cell.  Note that the shifted control and perturbed traces overlap completely in cycles subsequent to that in 
which the pulse was applied.  Phases for the plots are approximately: (a) 0.02, (b) 0.5,  (c) 0.79 – the maximum upstroke of the beat, (d) 0. 83 – the peak of the 
beat. 
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Fig. 4 The I-V limit cycle for the Dokos model cell. 
The applied pulse was 1nA for 1ms at the phases indicated.  Both the control and perturbed traces are shown for comparison.  The traces move clockwise in 
time.  Upon application of the pulse, the perturbed trace deviates from the control limit cycle, but returns to it in subsequent cycles.  Phases for the plots are 
approximately: (a) 0.02, (b) 0.5, (c) 0.79 – the maximum upstroke of the beat, (d) 0.83 – the peak of the beat.  Note the different scales for the figures. 

 

V. CONCLUSION 

Our simulations of the Dokos model of a sinoatrial node 
cell have shown that the cells cycle in a stable limit cycle.  
When perturbed, they exhibit phase-resetting behaviour 
where the cycle shifts in phase but in no other characteristic.  
This concurs with the hypothesis of “no memory” of the 
cells, used to derive phase response curves for particular 
single pulses from data recorded from series of such pulses. 

We have also shown that whilst the greatest deviation 
from the cell’s normal limit cycle occurs near the maximum 
upstroke of the beat, this does not lead to the greatest phase 
resetting.  Indeed, the greatest phase resetting effect appeared 
to occur during the gradual increase in membrane potential 
subsequent to the beat. 
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